5-3 Bisectors in Triangles

Can you conjecture any other properties that the perpendicular lines might have?

MATHEMATICAL PRACTICES

Objective To identify properties of perpendicular bisectors and angle bisectors

> Construct a circle and label its center C. Choose any three points on the circle and connect them to form a triangle. Draw three lines from C such that each line is perpendicular to one side of the triangle. What conjecture can you make about the two segments into which each side of the triangle is divided? Justify your reasoning.

In the Solve It, the three lines you drew intersect at one point, the center of the circle. When three or more lines intersect at one point, they are concurrent. The point at which they intersect is the point of concurrency.

Essential Understanding For any triangle, certain sets of lines are always

Lesson
Vocabulary
concurrent

- point of concurrency
- circumcenter of a triangle
- circumscribed about
- incenter of a triangle
- inscribed in concurrent. Two of these sets of lines are the perpendicular bisectors of the triangle's three sides and the bisectors of the triangle's three angles.

Theorem 5-6 Concurrency of Perpendicular Bisectors Theorem

Theorem

The perpendicular bisectors of the sides of a triangle are concurrent at a point equidistant from the vertices.

Diagram

Symbols

Perpendicular bisectors $\overline{P X}, \overline{P Y}$, and $\overline{P Z}$ are concurrent at P.
$P A=P B=P C$

The point of concurrency of the perpendicular bisectors of a triangle is called the circumcenter of the triangle.

Since the circumcenter is equidistant from the vertices, you can use the circumcenter as the center of the circle that contains each vertex of the triangle. You say the circle is circumscribed about the triangle.

Given: Lines ℓ, m, and n are the perpendicular bisectors of the sides of $\triangle A B C . P$ is the intersection of lines ℓ and m.

Prove: Line n contains point P, and $P A=P B=P C$.

Proof: A point on the perpendicular bisector of a segment is equidistant from the endpoints of the segment. Point P is on ℓ, which is the perpendicular bisector of $\overline{A B}$, so $P A=P B$. Using the same reasoning, since P is on m, and m is the perpendicular bisector of $\overline{B C}, P B=P C$. Thus, $P A=P C$ by the Transitive Property. Since $P A=P C, P$ is equidistant from the endpoints of $\overline{A C}$. Then, by the converse of the Perpendicular Bisector Theorem, P is on line n, the perpendicular bisector of $\overline{A C}$.

The circumcenter of a triangle can be inside, on, or outside a triangle.

Right triangle

Obtuse triangle

Problem 1 Finding the Circumcenter of a Triangle

What are the coordinates of the circumcenter of the triangle with vertices $P(0,6)$, $O(0,0)$, and $S(4,0)$?

Find the intersection point of two of the triangle's perpendicular bisectors. Here, it is easiest to find the perpendicular bisectors of $\overline{P O}$ and $\overline{O S}$.
of the circumcenter make sense? Yes, $\triangle P O S$ is a right triangle, so its circumcenter should lie on its hypotenuse.

Does the location

Think

Step $1(0,3)$ is the midpoint of

Step $2(2,0)$ is the midpoint of $\overline{O S}$. The line through $(2,0)$ that is perpendicular to $\overline{O S}$ is $x=2$.

The coordinates of the circumcenter of the triangle are $(2,3)$.
Got It? 1. What are the coordinates of the circumcenter of the triangle with vertices $A(2,7), B(10,7)$, and $C(10,3)$?

How do you find a point equidistant from three points? As long as the three points are noncollinear, they are vertices of a triangle. Find the circumcenter of the triangle.

A town planner wants to locate a new fire station equidistant from the elementary, middle, and high schools. Where should he locate the station?

The three schools form the vertices of a triangle. The planner should locate the fire station at P, the point of concurrency of the perpendicular bisectors of $\triangle E M H$. This point is the circumcenter of $\triangle E M H$ and is equidistant from the three schools at E, M, and H.

Got lt? 2. In Problem 2, the town planner wants to place a bench equidistant from the three trees in the park. Where should he place the bench?

Theorem 5-7 Concurrency of Angle Bisectors Theorem

Theorem

The bisectors of the angles of a triangle are concurrent at a point equidistant from the sides of the triangle.

Diagram

Symbols
Angle bisectors
$\overline{A P}, \overline{B P}$, and $\overline{C P}$ are concurrent at P.
$P X=P Y=P Z$

You will prove Theorem 5-7 in Exercise 24

The point of concurrency of the angle bisectors of a triangle is called the incenter of the triangle. For any triangle, the incenter is always inside the triangle. In the diagram, points X, Y, and Z are equidistant from P, the incenter of $\triangle A B C$. P is the center of the circle that is inscribed in the triangle.

Think

What is the distance from a point to a line?
The distance from a point to a line is the length of the perpendicular segment that joins the point to the line.

Problem 3 Identifying and Using the Incenter of a Triangle
Algebra $G E=2 x-7$ and $G F=x+4$. What is $G D$?
G is the incenter of $\triangle A B C$ because it is the point of concurrency of the angle bisectors. By the Concurrency of Angle Bisectors Theorem, the distances from the incenter to the three sides of the triangle are equal, so $G E=G F=G D$. Use this relationship to find x.

$$
\begin{aligned}
2 x-7 & =x+4 & & G E=G F \\
2 x & =x+11 & & \text { Add } 7 \text { to each side. } \\
x & =11 & & \text { Subtract } x \text { from each side. }
\end{aligned}
$$

Now find GF.

$$
\begin{aligned}
G F & =x+4 \\
& =11+4=15 \quad \text { Substitute } 11 \text { for } x .
\end{aligned}
$$

Since $G F=G D, G D=15$.
Got lt? 3. a. $Q N=5 x+36$ and $Q M=2 x+51$. What is $Q O$?
b. Reasoning Is it possible for $Q P$ to equal 50 ? Explain.

Lesson Check

Do you know HOW?

1. What are the coordinates of the circumcenter of the following triangle?

2. In the figure at the right, $T V=3 x-12$ and $T U=5 x-24$. What is the value of x ?

Do you UNDERSTAND?

mathematical
3. Vocabulary A triangle's circumcenter is outside the triangle. What type of triangle is it?
4. Reasoning You want to find the circumcenter of a triangle. Why do you only need to find the intersection of two of the triangle's perpendicular bisectors, instead of all three?
5. Error Analysis Your friend sees the triangle at the right and concludes that $C T=C P$. What is the error in your
 friend's reasoning?
6. Compare and Contrast How are the circumcenter and incenter of a triangle alike? How are they different?

Coordinate Geometry Find the coordinates of the circumcenter of each triangle.
7.

8.

Coordinate Geometry Find the coordinates of the circumcenter of $\triangle A B C$.
9. $A(0,0)$
$B(3,0)$
$C(3,2)$
10. $A(0,0)$
$B(4,0)$
$C(4,-3)$
11. $A(-4,5)$
$B(-2,5)$
$C(-2,-2)$
12. $A(-1,-2)$
$B(-5,-2)$
$C(-1,-7)$
13. $\begin{array}{r}A(1,4) \\ B(1,2) \\ C(6,2)\end{array}$
14. City Planning Copy the diagram of the beach. Show where town officials should place a recycling barrel so that it is equidistant from the lifeguard chair, the snack bar, and the volleyball court. Explain.

Name the point of concurrency of the angle bisectors.
See Problem 3.

Find the value of x.

18. $R S=4(x-3)+6$ and $R T=5(2 x-6)$.

19. Think About a Plan In the figure at the right, P is the incenter of isosceles $\triangle R S T$. What type of triangle is $\triangle R P T$? Explain.

- What segments determine the incenter of a triangle?
- What do you know about the base angles of an isosceles triangle?

Constructions Draw a triangle that fits the given description. Then construct the inscribed circle and the circumscribed circle. Describe your method.

20. right triangle, $\triangle D E F$
21. obtuse triangle, $\triangle S T U$
22. Algebra In the diagram at the right, G is the incenter of $\triangle D E F$, $m \angle D E F=60$, and $m \angle E F D=2 \cdot m \angle E D F$. What are $m \angle D G E, m \angle D G F$, and $m \angle E G F$?
23. Writing Ivars found an old piece of paper inside an antique book. It read,

From the spot I buried Olaf's treasure, equal sets of paces did I measure; each of three directions in a line, there to plant a seedling Norway pine. I could not return for failing health; now the hounds of Haiti guard my wealth. - Karl
After searching Caribbean islands for five years, Ivars found an island with three tall Norway pines. How might Ivars find where Karl buried Olaf's treasure?
24. Use the diagram at the right to prove the Concurrrency of Angle Proof Bisectors Theorem.

Given: Rays ℓ, m, and n are bisectors of the angles of $\triangle A B C . X$ is the intersection of rays ℓ and $m, \overline{X D} \perp \overline{A C}, \overline{X E} \perp \overline{A B}$, and $\overline{X F} \perp \overline{B C}$.
Prove: Ray n contains point X, and $X D=X E=X F$.

25. Noise Control You are trying to talk to a friend on the phone in a busy bus station. The buses are so loud that you can hardly hear. Referring to the figure at the right, should you stand at P or C to be as far as possible from all the buses? Explain.
C. Reasoning Determine whether each statement is true or false. If the statement is false, give a counterexample.
26. The incenter of a triangle is equidistant from all three vertices.
27. The incenter of a triangle always lies inside the triangle.

28. You can circumscribe a circle about any three points in a plane.
29. If point C is the circumcenter of $\triangle P Q R$ and the circumcenter of $\triangle P Q S$, then R and S must be the same point.
30. Reasoning Explain why the circumcenter of a right triangle is on one of the triangle's sides.

Determine whether each statement is always, sometimes, or never true. Explain.

31. It is possible to find a point equidistant from three parallel lines in a plane.
32. The circles inscribed in and circumscribed about an isosceles triangle have the same center.

Standardized Test Prep

SAT/ACT

Short Response
33. Which of the following statements is false?
(A) The bisectors of the angles of a triangle are concurrent.
(B) The midsegments of a triangle are concurrent.
(C) The perpendicular bisectors of the sides of a triangle are concurrent.
(D) Four lines intersecting in one point are concurrent.
34. What type of triangle is $\triangle P U T$?
(F) right isosceles
(H) obtuse scalene
(G) acute isosceles
(I) acute scalene
35. Which statement is logically equivalent to the following statement?

If a triangle is right isosceles, then it has exactly two acute angles.
(A) If a triangle is right isosceles, then it has one right angle.
(B) If a triangle has exactly two acute angles, then it is right isosceles.
(C) If a triangle does not have exactly two acute angles, then it is not right isosceles.
(D) If a triangle is not right isosceles, then it does not have a right angle.
36. Refer to the figure at the right. Explain in two different ways why $\overline{M V}$ is the angle bisector of $\angle K V R$.

Mixed Review

Use the figure at the right for Exercises 37 and 38.
37. Find the value of x.
38. Find the length of $\overline{A D}$.

Get Ready! To prepare for Lesson 5-4, do Exercises 39 and 40.
Find the coordinates of the midpoint of $\overline{A B}$ with the given endpoints.
See Lesson 1-7.
39. $A(3,0), B(3,16)$
40. $A(6,8), B(4,-1)$

